

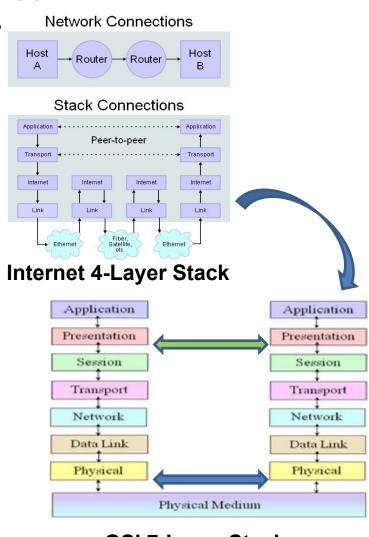
The Evolution of the Internet Community and the "Yet-to-evolve" Smart Grid Community:

Parallels and Lessons-to-be-learned

Charles McParland,
Lawrence Berkeley National Laboratory

The Shared Smart Grid Vision

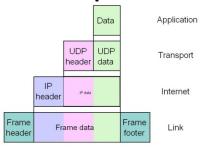
- "Community" of co-operating energy-related devices deployed as part of our national power grid to enhance system flexibility, security, and robustness.
 - Devices capable of independent action ("smart")
 - Interconnected and communicating with other devices ("grid")
- The Smart Grid will be a transformative technology that will, eventually touch effect every part of our existing power grid including every home.
- Unlike other such transformations (modern digital computers, optical cables), the success of the Smart Grid will not depend on a single new technology – but, rather on its system architecture.


A *Very* Brief History of the Internet

- ARPA-funded project (1962) to create resilient computer networks.
 - Centralized administration viewed as the achilles heel of existing designs.
 - "How do you manage a network of 100's of computers in a disaster or war scenario?"
 - IP protocols turned out to be reasonably lightweight and VERY scalable.
- Lots of competing designs during 80's and early 90's.
 - IPX (Netware), X.25, etc.
 - In the network world, this intensively competitive period was known as the "great protocol wars".

Internet History(contd).

- "IP" protocols ultimately prevailed.
 - Based on providing "just enough"
 functionality never too much.
 - Architecture could be deployed on a large scale.
 - Minimal centralized administrative overhead.
 - Promoted a "layered"
 architecture that kept internal implementation details
 compartmentalized.



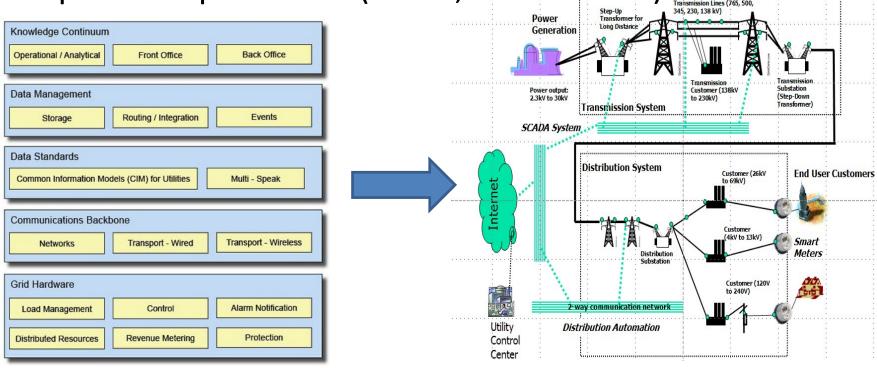
OSI 7-Layer Stack

What does "Internet" really refer to?

- 1. The IP family of data communications protocols.
 - Describes mechanics of packaging data into frames and routing it through the network.

- OR -

- 2. The modern public network that millions of people experience and interact with every day.
 - Simple services: time, email, file transfer
 - Interactive services: www, browsing, searches
 - Enabling services: eCommerce, video delivery
 - Transformative services: uTube, FaceBook, etc.
 - Internet users have a highly developed set of expectations



The Smart Grid isn't the Internet

- Power grids have some constraints that IP protocols do not address –critical latencies, real time response.
- Specialized networks have a well-deserved place in the grid system architecture- Private networks, optimized protocols (DNP3, IEC 61850...).

Grid Wise Framework/Architecture Stack

- GWAC stack codifies interactions across a wide range of grid activities.
 - viz. Internet analogy, it covers both network and Internet application area.
 - While it covers the customer interface it does not fully embrace all the implications of the "Smart House".

GWAC Framework

- While similar to Internet model, there are differences.
 - Governance (open vs. closed).
 - Dynamic, innovative pace of Internet development vs.
 stability requirements for grid operations and business needs.
 - Predictable "culture clash".

With the Customer comes the Internet

• Ente

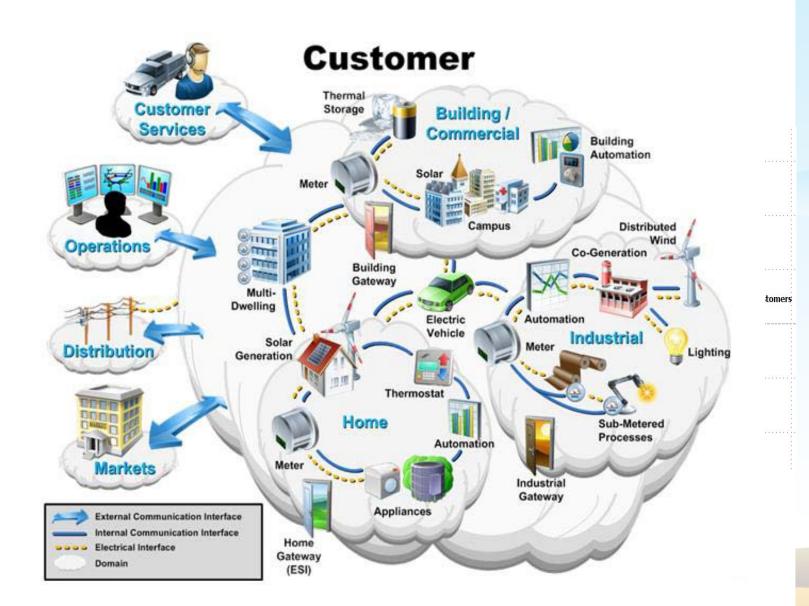
Knowledge Co

Data Manager

Storage

Data Standard

Common Infor

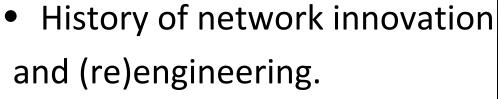

Communication

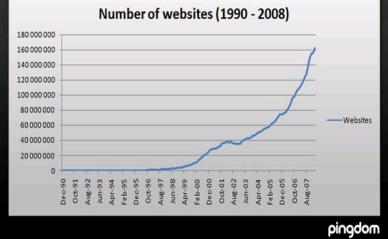
Network:

Grid Hardware

Load Manage

Distributed Res




Lessons from the Internet

Internet is huge, "built" environment – has begun to

express "community" values.

Little centralized governance but growing shared enforcement.

- Successful and not-so-successful search engines (Google, AltaVista, Excite@home.).
- Lessons for the Smart Grid:
 - Finding things on the Internet
 - Talking to things on the Internet
 - Home automation and the Internet (and the Smart Grid)
 - "Smart Users"

Finding "things" on the Internet

- Internet community needed to developed sophisticated "search engines" as an effective way to
 - find things on the network.
 - Necessary due to scale and dynamic nature of network.
 - Find things by both network
 name AND data content.
- Lesson: as SG grows and

Recent US Internet Map

reaches into homes to locate smart appliances and energy loads, it will face a task of similar dimensions.

- e.g. 400K dishwashers shipped into US market in July '09.
 Soon, these will be communicating, smart devices.
- "Which network will these devices be on?"

Talking to "things" on the Internet: the Quest for Middleware

- Supporting communications between applications distributed across the network has been a continual, daunting task for network engineers.
 - Example apps: eCommerce, web sales, demand response.
 - Motivated a series of initiatives through 80's and 90's:
 DCOM, CORBA, SOAP, Web Services, etc. =>"Birth and death of middleware".

Middleware

M ainframe

M inicomputer

- Lesson: Internet constantly re-inventing how stack is used!
 - Expect large periodic changes (DCOM=> CORBA => SOAP => REST => ?).
 - Stress scaling and complexity
 as critical, long term concerns.

Smart Grid, Internet and Home Automation

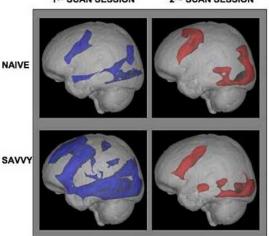
• The largest venue for individual interactions with the SG will increasingly be the home. _____

- Roughly 100M households.
- Why automate the home?
 - ~20% of current grid load....will
 increase with electric car market.
 - Critical to any "smart" control strategy.
- Consumer Owned Utility Owned billing star lime PST N/DS L/Cable/Safellife peak power RDS/FM or pager broad oa st messages Private Fixed Networks acknowledgement WAN/LAN orice storats reliability signat 1-way HA N Protocols Any gateway T24 PCT Interval (protocol str Special box **BA709** internet moden 2-way Home Plug e spandon port Media PC *Security panel **Broadband** TV. music Chaptay 2.To be determined 3. Up to 45 active protocols world wide
- But– the home is not a blank slate.
 - Well established market (~20 yrs.)
 - Approx. 4M whole house systems installed along with many more partial systems (e.g. just lighting, just security, etc.)

The Internet and Home Automation

- With US residential Internet access at ~75%, home automation and Internet functions are merging.
 - Ubiquitous access (Internet) + convenience and local control (home automation) = the new Smart House.
 - Many large vendors already in this space. (Google, Intel, MS, etc.)
 - User expectations are established:"access anything anywhere anytime".
- Lesson: "Certainly, the SG will

use the Internet to interact with end users.....But,"


- Will architecture meet "home automation" expectations?
 (e.g. recent Smart Meter data presentation issues)
- Will data and access paths be open or proprietary?

User Skill Base in the Internet Community

- Internet users getting comfortable with IP technology.
 - BT dramatically reduces cost of DSL deployment by implementing successful customer DIY install program.
 - Hardware, software and social engineering efforts have educated users – good news for widespread technology deployments.
- Even some evidence that "savvy" Internet users show increased problem solving abilities
- Lessons:
 - Internet user community accepts and is comfortable with new technologies.
 - Leverage these skills by focusing on
 Internet for user interactions with SG.

UCLA Internet Surfing Brain Scan

Conclusions

- Potential scale and extent of the Smart Grid are closely matched with those of the existing Internet.
 - While a good predictor of Smart Grid success, there is still ample room for architectural mistakes.
 - Internet implementation history can provide valuable guidance: maximize flexibility and minimize complexity.
- If the entire Smart Grid vision is to be achieved, its implementation must also satisfy the group that will be its largest stakeholder the residential end user.
 - This group is already intensely engaged with the Internet.
 - SG should leverage this by meeting existing Internet and home automation expectations – in essence, integrate end user activities into the Internet Community.